The Banach-Tarski paradox

Mathematics is seen by many as a mysterious and often unsettling subject. Answers often hide behind layers and layers of complicated equations, formulas and ciphers, the application of advanced concepts to real life is limited and I often find myself more confused after class than when I first entered. However, the real beauty of Mathematics … Read more

Pascal’s triangle, binomial theorem

What is Pascal’s Triangle? Pascal’s Triangle was named after Blaise Pascal. Pascal’s triangle starts with the number 1 and goes down the scale. When you start with one, add more numbers in a triangular shape, like a pyramid of some sort. All the numbers on the surrounding right and left sides of the triangle are … Read more

My journey of teaching and learning mathematics since embarking on a PGCE Mathematics course

Before I came to study a Post Graduate Certificate (PGCE) Mathematics course at University College London Institute of Education (UCL IOE), I had been working as an Academic Tutor at a behavioural centre, linked to a mainstream secondary school for the past 7 months. Students placed here had either learning difficulties or behaviour issues experienced … Read more

Aircraft – mathematics

Math SL Internal Assessment Lift and Drag Introduction When you look at aircrafts, they look like they shouldn’t be able to leave the ground because of how big they are. I always watched aircrafts, take off and land, over and over. According to Newton’s Third Law, every action has an equal and opposite reaction, lift … Read more

Emmy Noether

She was more than a mathematician to the people she met and to the people she inspired. She even has managed to inspire people long after she has passed. Emmy Noether was born on March 23, 1882 in Bavaria Germany. Growing up she wanted to go to college but back then women weren’t allowed to … Read more

Bitopological Approximation Space with Application to Data Reduction in Multivalued Information Systems

Abstract: In this work we generalize Pawlak approximation space to bitopological approximation space. One binary relation can define two subbases of two topological spaces. Membership, equillity and inclusion relations using rough approximations are defined and studied in bitopological aapproximation space. Some new measures that measure the accuracy and the quality of approximations are defined and … Read more

The Mathematics of Our Universe

Abstract In this report, we start by defining key aspects of classical Lagrangian mechanics including the principle of least action and how one can use this to derive the Euler-Lagrange equations. Momentum and Conservation laws shall also be introduced, deriving relations between position, momenta and the Lagrangian of a given system. Following this, we develop … Read more

Teaching of mathematics

INTRODUCTION As mathematics is a compulsory subject upto the secondary level, access to quality mathematics education is the right of every child. Developing children’s abilities for mathematisation is the main goal of mathematics education. In the words of David Wheeler, it is “more useful to know how to mathematise than to know a lot of … Read more

History of mathematics

INTRODUCTION After the early mathematicians from Egypt, Babylon, and Greece, mathematics still continued to pave its way toward so many ideas and discoveries. The successors of the Greeks in the history of mathematics were the Hindus of India. The Hindu civilization’s record in mathematics dates from about 800 B.C., but became significant only after influenced … Read more